

Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Canada

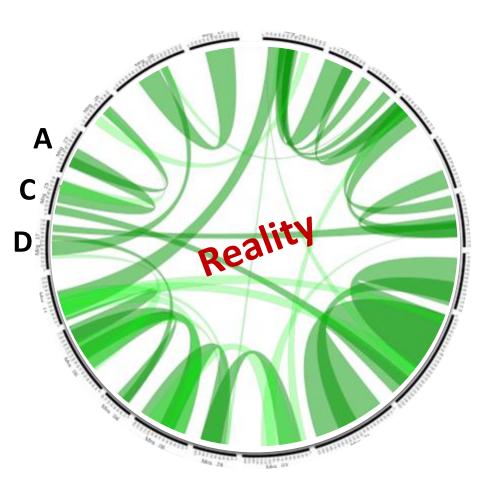
Haplotag:

your passport to anywhere in the oat world

Nick Tinker Ottawa Research and Development Centre

Goal: EVERYONE understands.....

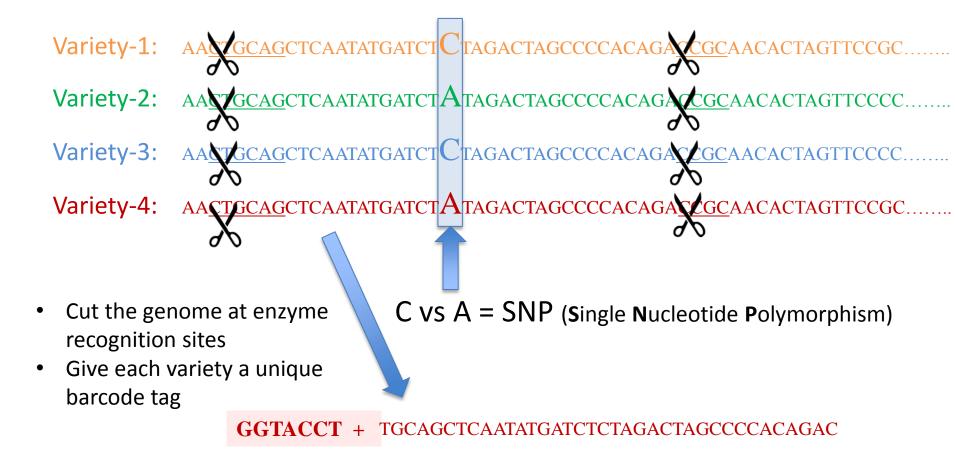
- 1. What is Genotyping-by-Sequencing (GBS)
- 2. Briefly, how we use it in cultivated oat
- 3. What we JUST DISCOVERED by applying GBS in wild oat species

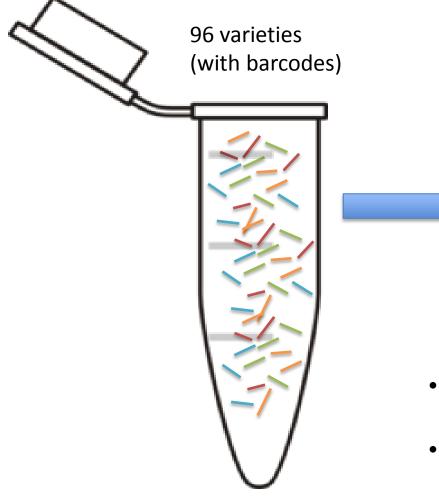

Everyone gets a GBS passport!
 Produced by new program "Haplotag"
 Tinker et al. (2016)
 Genes, Genomes and Genetics

<u>Cultivated</u> Oat Genome – Why is it a challenge ?

- Large repetitive genome (13 billion bases)
- Not yet sequenced*
- Hexaploid (AA+CC+DD)
- Chromosome rearrangements

We have a lot to learn more about chromosome structure and origin.

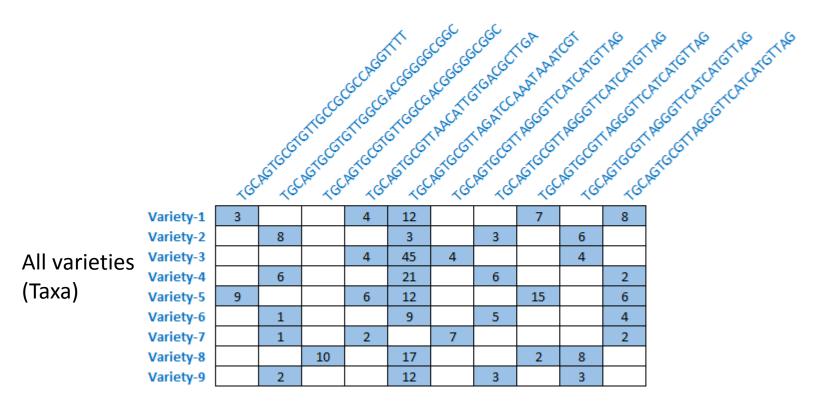

Future of oat could depend on finding and integrating alleles from A, C, D genome ancestors (?)


What is GBS, what does Haplotag do?

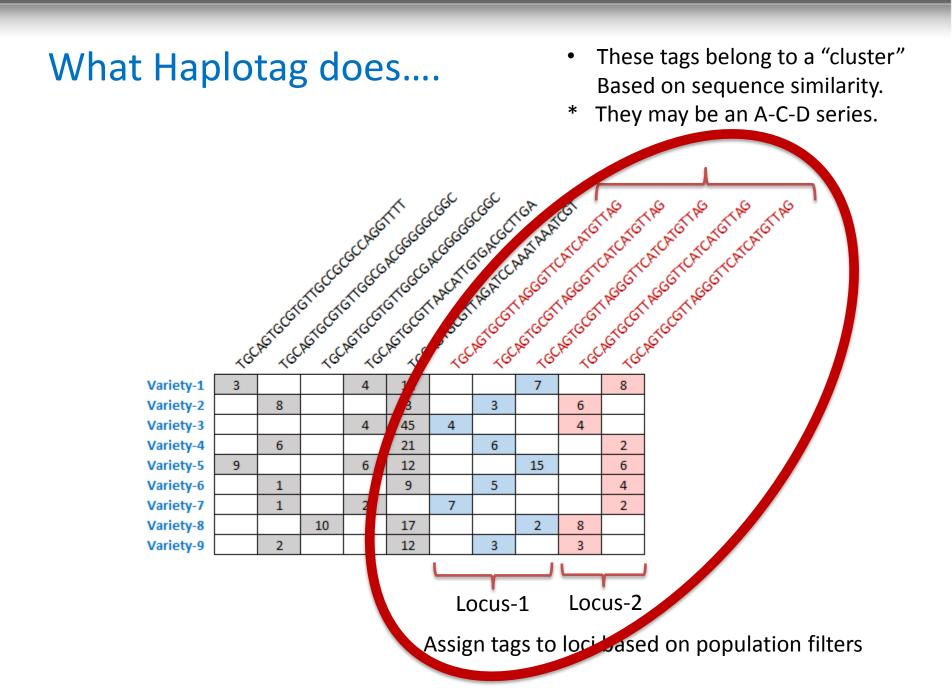
Imagine:

The complete 13-billion-base genomes of each variety......

Now we mix all the fragments to sequence them all at once:



400 Million reads = "sequence tags"


- We know which variety each tag comes from because it has a barcode.
- Barcode is trimmed after identification.

Tag-by-Taxa Grid:

All tags that appear more than (10) times: (typically, millions of tags)

- Count the number of times we see a given tag in each variety
- We CAN use this directly as a presence-absence genotype grid
- Better if we can assign tags to discrete diploid loci

Haplotag passport

... in your browser: Haplotag.aowc.ca/example and on T3/Oat public database

	Locus	1	T G C A G C <mark>T C A A T A T G A T C T C T A G</mark> A C T A <mark>G</mark> C C C C <mark>A C A R</mark> A C C A A C <mark>A C T A G T Y T T T T C T G</mark> C <mark>G C A A T T T G</mark>
(1)	TagID	Count	1 2 3 4 5 6
(\perp)	1	394	T G C A G C T C A A T A T G A T C T C T A G A C T A G C C C C A C A A A C C A A C A A T A T G T T T T C T G C G C A A T T T G
	2	1654	T G C A G C T C A A T A T G A T C T C T A G A C T A G C C C C A C A <mark>G</mark> A C C A A C A C T A G T T T C T G C G C A A T T T G
	3	427	T G C A G C T C A A T A T G A T C T C T A G A C T A G C C C C A C A <mark>G</mark> A C C A A C A C T A G T T T T T C T G C G C A A T T T G
(\mathbf{n})	Locus	2	T G C A G C T C A T T A T G A T C T C T A G A C T A G C C C C A C A G A C C A A C A C T A G T C T T T Y C T G C G C A A T T T G
(\mathbf{J})	TagID	Count	1 2 3 4 5 6
	4	1851	T G C A G C T C A T T A T G A T C T C T A G A C T A G C C C C A C A G A C C A A C T A G T C T T T C C T G C G C A A T T T G
	5	435	T G C A G C T C A T T A T G A T C T C T A G A C T A G C C C C A C A G A C C A A C T A G T C T T T T C T G C G C A A T T T G

					2
Starter	0	0	1	0	2
Sutton	0	1	0	0	0
SW Kerstin	4	0	0	5	0
Sylva	0	3	0	7	0
TAM O-312	0	0	1	0	1
Tartarian	0	0	0	0	0
Terra	0	7	0	0	0
Trispernia	0	0	1	2	0
UFRGS 9912002-2	0	0	0	0	0
Ukraine	0	0	2	1	0
Ursus	0	1	0	2	0
VAO-10	0	0	4	0	5
VAO-22	0	0	1	0	1
VAO-45	0	1	0	0	1

Haplotag.aowc.ca/example

L	ocus.	1	TGCAG	C T C	A A 7	Γ <mark>Α</mark> Τ	G A T	с <mark>т</mark> с	C <mark>T</mark> A	<mark>G</mark> A C	C <mark>T</mark> A	GCO	ссс	A C A I	<mark>R A</mark> C	CA	AC	A C 7	r a g	ΤY	ΤТ	ТT	с <mark>т</mark>	G C C	C A	A A T I	ГТ <mark>(</mark>
Ta	agID	Count			1				2				3				4				5					6	
	1	394	TGCAG	СТС	AAT	ГΑТ	GAT	СТС	ТА	GAO	ТА	GCO	сс.	A C A	A A C	СА	AC	ACI	C A G	TC	ΤТ	ΤТ	СТО	GCC	G C A	AATI	ГΤ
	2	1654	TGCAG	СТС	AAT	ГΑТ	GAT	СТС	ТА	GAO	ТА	GCO	сс	A C A	G A C	СА	AC	A C I	Γ A G	T C	ΤТ	ΤТ	СТО	GCC	G C A	A A T 1	ГΤ
	3	427	TGCAG	CTC	AAT	ТΑΊ	GAT	СТС	ТА	GAO	ТА	GCO	сс.	A C A	GAC	CA	AC	A C 1	Γ A G	T T	ΤТ	ΤТ	СТО	GCO	G C A	A A T 1	ΤТ
L	ocus.	2	TGCAG	C T C	A T 1	ΓΑΤ	G A T	с <mark>т</mark> с	CT A	GAC	CT A	G C (CCC.	A C A	<mark>G A</mark> C	CA	AC	A C 7	r a g	ТC	ΤТ	ΤY	с <mark>т</mark>	G C C	C A	A A T I	ΓТ
T	agID	Count			1				2				3				4				5					6	
	4	1851	TGCAG	СТС	AT 1	ТΑТ	GAT	СТС	ТА	GAO	ТА	GCO	сс.	ACA	GAC	СА	AC	A C I	Γ A G	TC	ТТ	ТC	СТО	GCC	G C A	AATI	ГΤ
	5	435	TGCAG	CTC	AT 1	ГΑТ	GAT	СТС	ТА	GAO	ТА	GCO	ссс	ACA	GAC	СА	AC	A C 1	Γ A G	TC	ТТ	T T	СТО	GCC	G C A	A T T	ГТ

Cluster With 2 loci

Haplotag.aowc.ca/example

Locus-1

- 3 tag-level haplotypes
- **2** SNPs

Haplotag.aowc.ca/example

Haplotag passport

Locu	us 1	TGCAGCT	CAA	TAT	G <mark>A T</mark> C	TCTAG	ACT.	A G C C C C A	A C A	R A C C A A C A C	C <mark>TA</mark> GTY	ТТТТ <mark>С</mark> Т	GCGCAAT	T T G
TagII			1			2		3		4		5	6	
<u> </u>									_	A A C C A A C A C				
										G A C C A A C A C				
	3 427	TGCAGCT	САА	TATO	GATC	TCTAG	ACT.	AGCCCC	A C A	G A C C A A C A C	CTAGT <mark>T</mark>	ТТТТСТ	GCGCAAT	ΤΤG
Locu	us 2	TGCAGCT	CAT	TAT	<mark>g a</mark> t c	TCTAC	ACT.	A G C C C C A	A C A	G <mark>ACCAA</mark> C <mark>A</mark> C	C <mark>TA</mark> GTC	<mark>ттт</mark> үст	GCGCAAT	TT <mark>G</mark>
TagII			1			2		3		4		5	6	
	4 1851	TOC	CAT	ТАТО	GATC	TCTAG	ACT	AGCCCC	ACA	GACCAACAC	CTAGTC	ттт <mark>с</mark> ст	GCGCAAT	ΤΤG
	5	TGCAGCT	CAL	T	GATC	TCTAG	ACT.	AGCCCC	ACA	GACCAACAC	CTAGTC	ТТТ <mark>Т</mark> СТ	GCGCAAT	ΤΤG
Star	rter		0	0	1		2					1		- 1
	rter		0	0	1		2		G	enoty	pes	of	Locι	ıs-1
Sut			0 0 4	0 1 0	1 0 0	0	2		G	enoty	pes	of	Locι	ıs-1
Sut	tton / Kerstin		0 0 4 0	0 1 0 3	1 0 0 0	0 0 5 7	2		G	enoty	vpes	of	Locι	ıs-1
Sut SW Syl	tton / Kerstin		0 0 4 0 0	0 1 0 3 0	1 0 0 0 1	0 0 5 7 0	20		G	-	-			
Sut SW Syl TA	tton / Kerstin Iva		0 0 4 0 0 0	0 1 0 3 0 0	1 0 0 0 1 0	0 0 5 7 0 0	2		G	enoty 3 haple	-			
Sut SW Syl TA	tton / Kerstin lva M O-312 rtarian		<u> </u>	0 1 0 3 0 0 7	1 0 0 1 0 0 0	0 5 7 0 0 0 0 0			G	3 haple	otype	es = 3	colum	ins
Sut SW Syl TA Tar Ter	tton / Kerstin lva M O-312 rtarian		0	0 1 0 3 0 0 7 0	0 1 0	0 0 5 7 0 0 0 0 0 2			G	3 haple Blue =	otype haplo	es = 3 otype	colum e prese	ins ent
Sutt SW Syl- TAT Tar Ter Tris	tton / Kerstin lva .M O-312 rtarian rra		0	0 1 0 3 0 0 7 0 0 0 0	0 1 0	0 5 7 0 0 0 0 0 2 0			G.	3 haple	otype haplo	es = 3 otype	colum e prese	ins ent
Sutt SW Syl TA Tar Ter Tris UFI	tton V Kerstin Iva M O-312 rtarian rra spernia	2-2	0 0 0 0 0	0 1 0 3 0 0 7 0 0 0 0 0 0	0 1 0	0 5 7 0 0 0 0 2 0 1			•	3 haple Blue =	otype haplo onver	es = 3 otype ted te	colum e prese o SNPs	ins ent

0

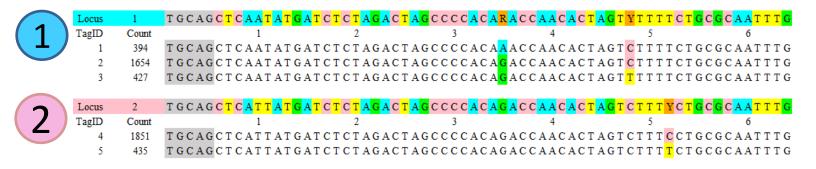
0

0

VAO-10

VAO-22

Q-45


0

0

0

0

Haplotag passport

Starter	0	0	1	0	2
Sutton	0	1	0	0	0
SW Kerstin	4	0	0	5	0
Sylva	0	3	0	7	0
TAM 0-312	0	0	1	0	1
Tartarian	0	0	0	0	0
Terra	0	7	0	0	0
Trispernia	0	0	1	2	0
UFRGS 9912002-2	0	0	0	0	0
Ukraine	0	0	2	1	0
Ursus	0	1	0	2	0
VAO-10	0	0	4	0	5
VAO-22	0	0	1	0	1
VAO-45	0	1	0	0	1

4657

Diversity

- 4657 varieties in <u>cultivated oat</u>
 - CORE project
 - Public Oat Genotyping
 - Ottawa breeding program
- Data on.....
 - 156,000 clusters/passports
 - 165,000 loci
 - 353,000 haplotypes
 - 241,000 SNPs

Haplotag passport – 12 CORE mapping populations

Locus	1	T G C A G C <mark>T</mark> C <mark>A A <mark>T A T G</mark> A <mark>T</mark> C <mark>T</mark> C</mark>	TAGACTAGCCCCACAR	ACCAACAC <mark>TA</mark> GTY	ТТТТС <mark>Т</mark> С <mark>С</mark> ССААТТТ	G
TagID	Count	1	2 3	4	5 6	
1		T G C A G C T C A A T A T G A T C T C				
2	1654	T G C A G C T C A A T A T G A T C T C	T A G A C T A G C C C C A C A <mark>G</mark>	ACCAACACTAGTC	TTTTCTGCGCAATTT	G
3	427	T G C A G C T C A A T A T G A T C T C	T A G A C T A G C C C C A C A <mark>G</mark>	A C C A A C A C T A G T <mark>T</mark>	TTTTCTGCGCAATTT	G

Haplotypes 2 and 3 segregate in KxO

				1
KO.023	0	1	0	[
KO.024	0	5	0	[
KO.026	0	0	1	
KO.027	0	4	0	
KO.028	0	2	0	
KO.030	0	0	4	
KO.031	0	1	0	
KO.032	0	3	0	
KO.033	0	0	5	
KO.035	0	2	0	

Haplotypes 1 and 2 segregate in HxZ

			·	-
HZ.003	0	4	0	[
HZ.004	1	0	0	[
HZ.005	0	1	0	
HZ.006	5	0	0	[
HZ.007	3	0	0	[
HZ.008	0	3	0	[
HZ.009	0	3	0	[
HZ.010	0	0	0	[
HZ.011	2	0	0	[
HZ.012	0	0	0	[
HZ.013	0	6	0	[
HZ.014	0	1	0	

Oat Consensus Map: Chaffin et al., 2016 The plant genome

• 26,913 loci placed

Mrg_13

Mrg_11

Wake up!

The rest is

- Short
- fun (?)
- Unpublished !

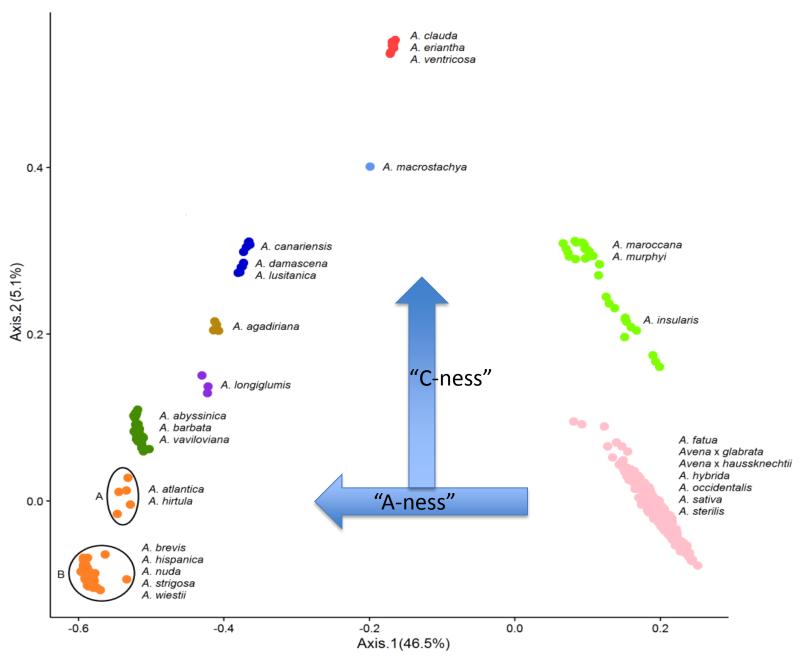
- Everything I just showed is in <u>cultivated hexaploid oat</u>
- What about doing GBS in other Avena species ??

Can we find these "cultivated haplotypes" in other oat species ?

Locus	1	T G C A G C <mark>T C A A T A T G</mark> A	ГС <mark>ТСТА<mark>G</mark>АСТ</mark>	A <mark>G</mark> C C C C <mark>A</mark> C <mark>A</mark> F	ACCAACAC <mark>TA</mark> GT	YTTTTCT <mark>G</mark>	C <mark>G</mark> C <mark>A A</mark> T T T <mark>G</mark>
TagID	Count	1	2	3	4	5	6
1		T G C A G C T C A A T A T G A					
2	1654	TGCAGCTCAATATGA	TCTCTAGACT.	A G C C C C A C A <mark>G</mark>	ACCAACACTAGT	CTTTTCTG	CGCAATTTG
3	427	T G C A G C T C A A T A T G A	TCTCTAGACT	A G C C C C A C A <mark>C</mark>	ACCAACACTAGT	<mark>Т</mark> Т Т Т Т С Т G	CGCAATTTG

Can the number of matched 1. haplotypes (across all loci) tell us which species are closest to cultivated oat? Can we infer the origin of the hexaploid 2. chromosome that contains this locus? Mrg 15 Mrg_13 Mrg_11

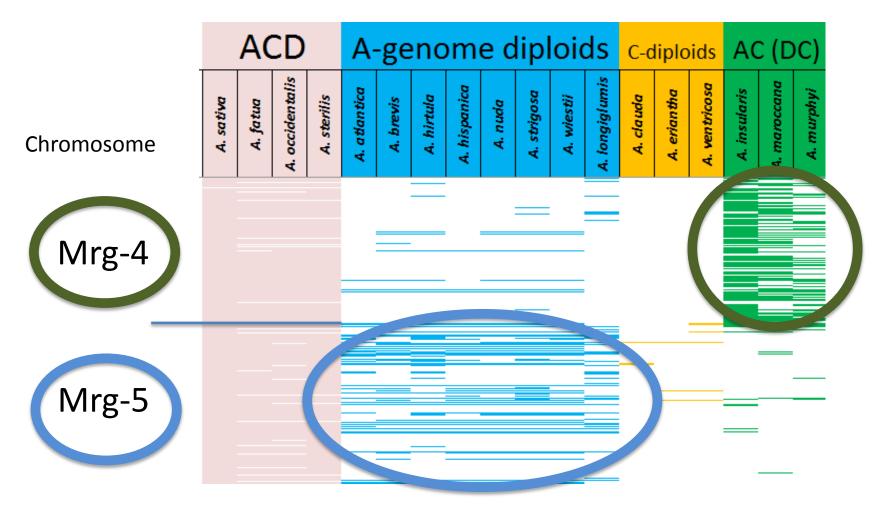
Matching cultivated haplotypes in wild oat species

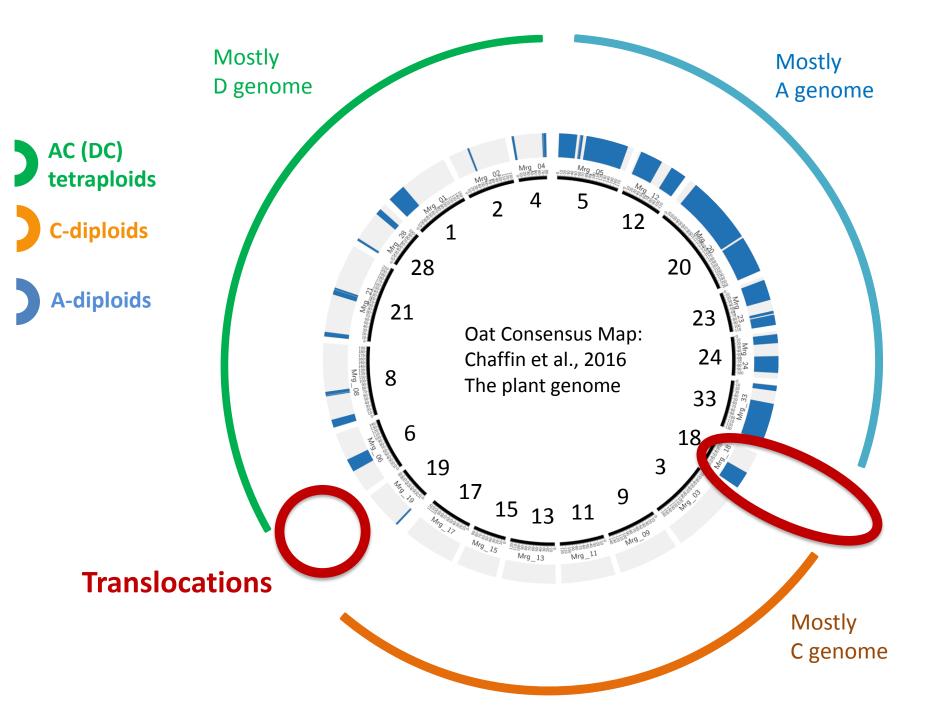

26,913 loci

27 oat species, 266 accessions

Locus	Chromosome	Position	A. atlantica	A. brevis	A. hirtula	A. hispanica	A. nuda	A. strigosa	A. wiestii	A. longiglumis	A. clauda	A. eriantha	A. ventricosa	A. insularis	A. maroccana	A. murphyi
avgbs 120103.1	1	30.6	0	0	0	0	0	0	0	0	0	0	0	1	0	0
avgbs cluster 25800.	1	30.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
avgbs cluster 25685.	1	31.6	0	0	0	0	0	0	0	0	0	0	0	1	1	0
avgbs 204073.1	1	31.7	0	0	0	0	0	0	0	0	0	0	0	1	0	0
avgbs 245421.1	1	31.7	0	0	0	0	0	0	0	1	0	0	0	1	0	1
avgbs 97250.1	1	31.7	0	0	0	0	0	1	0	0	0	0	0	1	0	1
avgbs cluster 20835.	1	31.7	1	1	1	1	1	1	1	1	0	0	0	1	1	1
avgbs cluster 34267.	1	31.7	0	0	0	0	0	0	0	0	0	0	0	1	1	0
avgbs cluster 45941.	1	31.7	0	0	0	0	0	0	0	0	0	0	0	1	1	1
avgbs cluster 4606.1	1	31.7	0	0	0	0	0	0	0	0	1	1	1	1	0	1
avgbs cluster 498.1	1	31.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
avgbs cluster 5204.1	1	31.7	0	0	0	0	0	0	0	0	0	0	0	1	0	0
avgbs cluster 9800.1	1	31.7	0	0	0	0	0	0	0	1	0	0	0	1	1	1
avgbs2 109348.1	1	31.7	1	_	_	_	1	1	1	1	1	1	1	1	1	1
avgbs2 125282.1	1	31.7	0	_	-		0	0	0	0	0	0	0	1	1	1
avgbs2 155493.1	1	31.7	0	_	-	-	0	1	0	0	0	0	0	1	0	1
avgbs2 26271.1	1	31.7	0	_		0	0	0	0	0	1	1	1	1	0	1
avgbs2 38701.2	1	31.7	0	-	-	0	0	0	0	1	0	0	0	1	0	1
avgbs2 52016.1	1	31.7	0	-	-	-	0	0	0	0	0	0	0	1	1	1
avgbs 124098.1	1	32.7	0	0	-	0	0	0	0	0	0	0	0	0	0	0
avgbs 20687.1	1	32.7	0	0	-	0	0	0	0	0	0	0	0	0	0	0
avgbs 115650.1	1	32.9	0	0			0	0	0	1	0	0	0	1	1	1
avgbs cluster 31622.	1	32.9	0	0	-	-	0	0	0	1	0	0	0	1	1	0
avgbs cluster 67801.	1	32.9	1	1	1	1	1	1	1	1	0	0	0	1	1	0

- Convert to 1/0 grid
- PCoA analysis of accessions


PCoA analysis: 266 accessions from 27 species of Avena


Genome size of 26 Avena species AACCDD 25 CCCC 20 2C-values 15 CC AA 10 1019 Anight Concerne A-stelleshaughcol Anudahahahah A.damascanatholicaths A.macrosadiyaConcon Accidentalia ACD Asalwalkon Acanonemaste AbabalalAB Antegenicalts Adaudato vanovanalit appointable Lagodinanalhi Inaroccanabl

Yan, et al. and Tinker (2016) Genome 59

Cultivated haplotypes - matching by ancestral groups

- Combine by ancestral groups
- Smooth this over 30cM Window, apply threshold

Summary

Haplotag applied in cultivated hexaploid on a large scale

• Improved consensus map, diversity analysis, GWAS, and GS

Haplotypes from cultivated oat in 27 species - What's new?

- First genetic distinction among three genomes of cultivated oat
- Assignments match perfectly with the 9 previous assigned chromosomes
- Allows completion/validation of chromosome assignments
- Demonstrates that the tetraploids contributed the D genome
- Identifies translocations on the map
- Avena insularis is the closest non-hexaploid species to cultivated oat
- Will assist with hexaploid genome mapping and sequencing
- Implications for germplasm conservation and allele mining

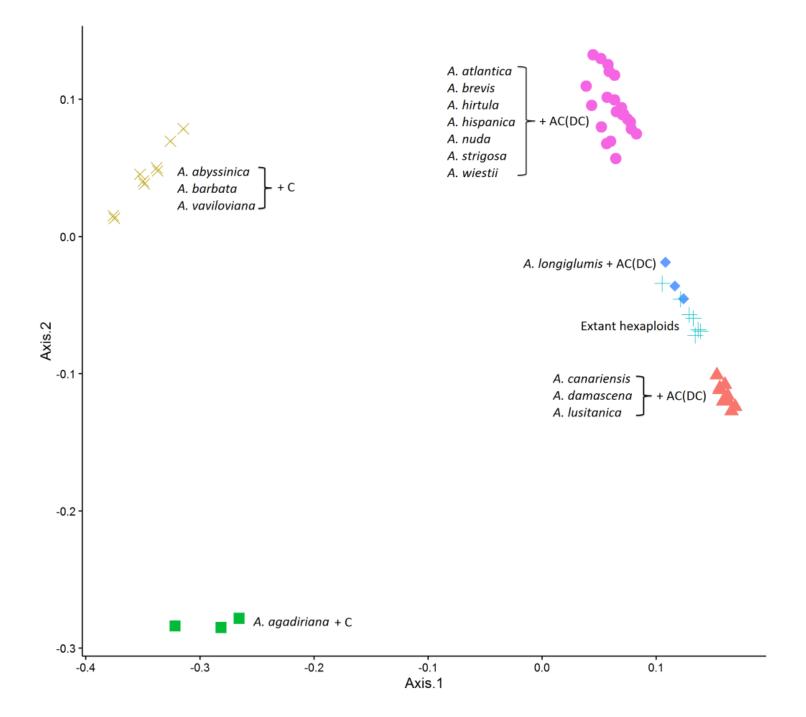
Thank You!

Collaborators

Yuanying Peng Tim Langdon Axel Diederichsen Catherine Howarth Bob Latta Yong-Bi Fu Rick Jellen Kathy Klos Jessica Schlueter ... and many others

Tinker lab:

Charlene Wight Wubishet Bekele Honghai Yan Phil Couroux Jiro Hattori Pingping Zhou Biniam Hizbai

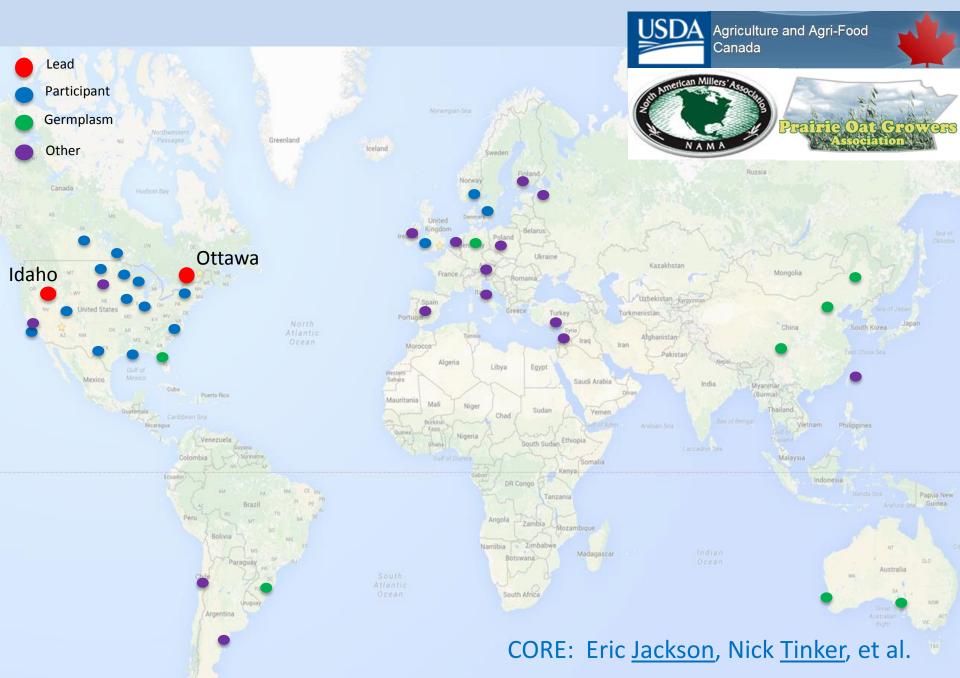

If you miss my talk tomorrow (concurrent session):

	Oat Global	Oatglobal.org
Dector	T3/Oat database	tritico o oto ollo ov ovo /o ot /
Poster	Public Oat Genotyping	triticeaetoolbox.org/oat/
	GrainGenes	http://wheat.pw.usda.gov/GG3/
Poster	Oat Newsletter	Ostnows org
Poster	+ Twitter	Oatnews.org
	Oat Rust	z.umn.edu/oatrustinitiative

 Table 2. Previous and current physical assignment of 21 chromosome representations from the hexaploid oat consensus map.

Consensus chromosomeª	Confirmed assignment ^a	Previous assignment ^b	Diploid assignment ^c	New genome assignment ^d
Mrg05	16A	<u>16A</u> , 1C	AD	Α
Mrg12		13A	AD	Α
Mrg20		19A	AD	Α
Mrg23	11A	<u>11A</u>	AD	Α
Mrg24		8A (14D)	AD	А
Mrg33		15A	AD	А
Mrg18		7C-17A	С	C/A
Mrg03	4C	<u>4C</u> (10D)	С	С
Mrg09	6C	<u>6C</u>	С	С
Mrg11		1C	C/A	С
Mrg13		(20D)	С	С
Mrg15	2C	<u>2C (</u> 10D)	С	С
Mrg17		3C	С	С
Mrg19	21D	<u>21D</u>	C / AD	C/D
Mrg06		14D	AD/C	D/C
Mrg08	12D	<u>12D</u>	AD/C	D/C
Mrg21		(16A)	AD/C	D/C
Mrg28		7C-(17A)	С	D/C
Mrg01		(5C)	AD	D
Mrg02	9D	<u>9D</u>	AD	D
Mrg04	18D	18D	AD	D

Haplotag Summary


Tinker et al. (2016) Genes, Genomes and Genetics

Features

- Runs on Windows, Free!
- Works in polyploid without a reference genome
- Graphical passport for each cluster of loci
- Saves genotype data as SNPs (bi-allelic) or haplotypes (multi-allelic)
- Two modes:
 - Cluster and locus discovery (slow, for new species)
 - Production mode (fast looks for tags from pre-defined loci)

Collaborative Oat Research Enterprise (CORE)

2009-2014

