How Should I Select the Individuals of my Training Population to Make Selections in Genomic Selection?

Tools

Phenotypic Selection
$\begin{array}{lllllllllll}M & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & M\end{array}$

MOST GENETIC CH/RACTERS ARE QUNTIT/TIVES

MAS

P Trait of interest

Marker

9	O	O	O
	$0 E N O M E$		

GS

GENOME

Tools

Falling fast

In the first few years after the end of the Human Genome Project, the cost of
genome sequencing roughly followed Moore's law, which predicts exponential declines in computing costs. After 2007, sequencing costs dropped precipitously

Citations in Each Year

The latest 20 years are displayed.
Number of Citations of GS per year. Web of science

WHAT IS GENOMIC SELECTION?

Genomic Selection is a "new" tool in plant and animad breeding that ses statisical modelingto predich how aplant/animad will perform (Breeding Value) beforve it is phenotyped.

Big Picture in Plant Breeding

Crossing

Evaluation

$i=$ Intensity of selection $r=$ Accuracy of selection
$\sigma_{A}=$ Additive genetic variance
(standard deviation)
$t=$ Time

Increase Genetic Gain by:

13 Increase Accuracy of Selection

\& Decrease Generation interval

Genomic Selection scheme

Train GS model

\[

\]

Selection

Does population structure has an impact on the optimization of the training population?.

1. Random Sampling
2. Stratified Sampling
3. Coefficient of determination (CD)
4. Prediction Error Variance (PEV)
5 Stratified Conefficient of

OPTIMIZATION

Wheat PCA

Rice PCA

Mild Population Structure in Wheat

Improving ǵenetic diversity using kinship matrix

$$
\begin{aligned}
& P E V=\operatorname{diag}\left[\frac{c^{\prime}\left(Z^{\prime} M Z+\lambda G^{-1}\right)^{-1} c}{c^{\prime} c}\right] \times \sigma_{\varepsilon}^{2} \\
& C D=\operatorname{diag}\left[\frac{c^{\prime}\left(G-\lambda\left(Z^{\prime} M Z+\lambda G^{-1}\right)^{-1} c\right.}{c^{\prime} G c}\right]
\end{aligned}
$$

Coefficient of determination use Kinship matrix in its calculation

OPTIMIZATION

OPTIMIZATION

Improving genetic diversity using kinship matrix

Yield

OPTIMIZATION

Yield

Heading Date

Test Weight

Lodging

Plant Height

OPTIMIZATION

Florets per panicule

Plant Height

Flowering Time

Popsize

Population structure has an impact on the optimization of the training population.

Mild PS---CDmean and StratCDmean
B
Strong PS---Stratified Samplin

OPTIMIZATION

Heading Date

Test Weight

Improving góenetic diversity using kinship matrix

Large genotypic variance obtained by CDmean doesn't translate into large phenotypic variance

OPTIMIZATION

- There isn't a best selection criterion to optimize the TRS under population structure. PS plays an important role in optimization of TRS in GS
-Before optimization, population structure must be evaluated
- Highest accuracies with methods that capture more phenotypic variance.

CDmean is an optimal criterion for lona-

Optimization of genomic selection training populations with a genetic algorithm

Deniz Akdemir ${ }^{1 \text { }}$, Julio I Sanchez ${ }^{1}$ and Jean-Luc Jannink ${ }^{2}$

Crop Improvement for Food Security

Trait selection for yield stability and disease resistance | Learn more ...

Plant Signalling and Development

Understanding fundamental cellular processes | Learn more ...

Plant Bioprocessing

Producing fuel and value-added products | Learn more ...

Adaptation to Future Climates

Predicting and evaluating crop productivity and performance under future climatic conditions | Learn more ...

