Stress Stages in Oat Australia

SOUTH
AUSTRALIAN
RESEARCH &
DEVELOPMENT
INSTITUTE
PIRSA

Dr. Pamela Zwer

Dr. Victor Sadras

Dr. Mahalakshmi Mahadevan

July 2016

Australian Oat Production

- 1.5 million t. grain
- 850,000 t export hay
- Demand increasing 10 to 15% per annum
- Growers receiving competitive prices for grain and hay

Top Five Oat Producing Countries 2010-1013

Australian Agricultural Zones

- Non-traditional oat growing regions
- Inconsistent rain events yearly
- Factors
 highlight
 importance of
 understanding
 stress stages
 in oat

Literature - Critical Periods

- Established for many cropsmaize, sunflowers, soybean, chickpea . . .
- Wheat and barley differ in critical period
- Important to establish for oat

Creating Controlled Stress

- Shade plants for a period of time through all developmental stages
- Shade reduces photosynthesis similar to effects of water or nutrient stress

Materials and Methods

Trial design—3 rep split plot, variety main plot, shade subplot Shade treatment 11 2-week periods consecutively through crop cycle

Materials and Methods

- Shade treatment imposed by PVC frames 1 x 1.3 m
- Frame covered with black nylon net
- Shade cloth intercepted 90% solar radiation

Weekly Phenology

- Notes were taken weekly for plant phenology— seedling emergence to senescence
- Plant growth stage related to yield reduction due to shaded treatment

Data Collection and Analysis

- Grain yield, yield components—grain number, grain weight, number of tillers m⁻²
- Data analysed ANOVA
- Significance of unshaded control compared to shaded treatment—Fisher's partial least square differences

SARDI

Results-Pinery 2013

- Annual rainfall 406 mm
- Growing season rainfall, April to November 353 mm
- Higher than average rain, May to August
- Only 15 mm in October (38% lower than long term
- 5.4 mm in Novembers compared to average 28.1 mm

Pinery, South Australia

- Average grain yield 3.25 t/ha (1.0 on y axis)
- Anthesis is 0 on the x axis
- Thermal time scale = daily mean temperature
- Closed symbols are significantly different to the control

Pinery, South Australia

Thermal time relative to anthesis (^OCd)

 $1.0 = 10,000 \text{ grains m}^{-2}$

•
$$1 = 33mg$$

Conclusions

- Critical period for stress was between 84 to 125 days after sowing
- Greatest effect near Z40 to Z60, booting to panicle emergence
- Grain yield reduction significant for three varieties during window
- Grain number m⁻² accounted for yield response
- Grain weight largely unresponsive to stress except in Williams
- Number of heads m-2 not significant

SARDI

Critical Period of Stress in the Breeding Program

- Successful crop
 management –avoids
 critical periods of
 stresses such as
 drought and frost
- Improve management options to increase grain yield
- Develop more
 effective evaluation
 procedures for stress
 tolerance—drought

SARDI

Thank You

