Oat Genetic Resources in Finland

Dr. Elina Kiviharju Luke, Natural Resources Institute Finland

13.7.2016, IOC, St Petersburg

© Natural Resources Institute Finland

Oat is one of the main cereal crop in Finland

Second biggest crop after barley

- In year 2015: 306 500 hectares, yield 980 million kg
- In year 2016: 332 000 hectares

Known for high quality including high protein content, high hectoliter weight, thin cover, purity, pale color

- Early, healthy, reliable yield

Use:

- Feed in the farm (33%)
- Feed industry (18%)
- Food industry (7%)
- Seeds (6%)
- Export (32%)
- Energy (4%)

Landraces

- Until the early 1900-century, oat cultivation was based on landraces
 - majority assumed to be black-covered in Finland.
- Landraces disappeared rapidly from active cultivation, when scientific cultivar breeding started.

Year	1902	1921	1930	1955
Winter wheat	100	100	~60-70	0,7
Spring wheat	100	94,3	~5	0,1
Barley	100	69,8	~25	1,0
Oats	100	33,8	~5-10	0,2
Winter rye	100	100	~70-80	18,0

Landraces in cultivation in Finland (%)

International concern about loosing genetic diversity of the crop plants, and domestic animals woke as late as 1960's.

Table by M. Heinonen, Luke

Early cultivar breeding

- The first cultivars were mainly selections made from the Nordic and Northern-European early cultivars.
- Swedish cultivars, especially Kultasade (Gold Rain, Guldregn) released in 1903 and Kultasade II in1928 were cultivated in large areas in Finland.
- Landraces collected around Finland in 1920's and were widely used as crossing parents in cultivar breeding.
 - For example: cv. Kytö (released in 1925), was a cross between Finnish landrace (Ta 091) and cv. Kultasade,
 - landrace contributed earliness and better yield production in the Norther conditions (Ulvinen, 2004).
 - Especially two Finnish landrace can be identified, which have largely affected to the background of the Finnish oat cultivars (Saastamoinen, 2000).
- Important crossing material was obtained also from the Northern parts of America, and East, like cv. Pendek from Siperian origin.

Today

- Today, 46 oat cultivars have been accepted to the Finnish national list of plant varieties, two of them naked type.
- Majority of them are cultivars of the Finnish company Boreal Plant Breeding Ltd. In addition, also cultivars bred in Sweden, Norway and Germany are in the list.
- In addition, black-hulled oat Heljä is accepted as conservation variety

Finnish seed material in NordGen

- NordGen the Nordic Genetic Resource Center conserve seeds of the cultivated plants for food and agriculture for all Nordic countries.
 - Active collection locates in Alnarp, Sweden
 - In total 30 000 unique seed accession

- NordGen collection includes 142 oat accessions of Finnish origin.
- In total, 1017 Avena acc, of which some CWR's (A. sterilis, strigosa, fatua, nuda, byzantina, barbata, brevis, abyssinica)
 - Set of oat samples was recently repatriated from the Vavilov Research Institute, showing the great importance of cooperation between the gene banks.
- Safety duplicated in the Svalbard Global Seed Vault.

Oat has potential for greater significance in feed and especially in the food sector.

- Different type of food products have been developed and their healthy effects and functional properties are promoted.
 - Yogurt, milk, ice cream, biscuits and snacks, bread, mysli and oatmeal, and newest pulled oat, which is kind of vegetarian meat by Gold&Green Foods.
- Targeted breeding for special aims could potentially increase oat use and productizing.

- Like breeding it even more suitable coeliac patients (pure oat products)

 variation shown in the protein faction patterns of individuals of old landraces (Ahokas & Manninen 2000, Gen.Res. Crop Evol.)

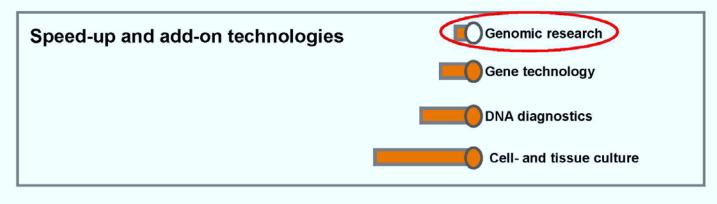
- Other health promoting factors
 - landrace varying in fatty acid ratio (V:16/C:18) and residual grain protein pattern (Ahokas & Manninen, 2000, Gen. Res. Crop Evol.)

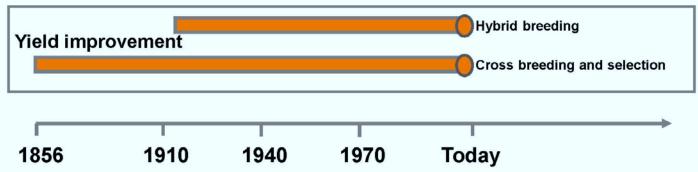
Oat gene pool is narrow

- Nordic oat gene pool is shown to be narrow (He & Bjørnstad, 2012). Where to get genetic variation for breeding?
- There is still work to be done to evaluate the characteristics of the existing Avena sativa cultivars, landraces and preserved breeding lines.
- In addition, large gene pool of other Avena species is available. Several of them are easily crossed with cultivated oat, like A. sterilis known to been used as a source of disease tolerances.

Wild Avena relatives have potential

- Axel Diederichsen yesturday noted, that important PGR's have been found from all ploidy levels.
- Igor Loskutov referred AI tolerant *A. sterilis* acc., and interesting variation in biochemical content, fatty acid composition and fusarium resistance measured in wild *Avena* species.
- Diploid *A. strigosa* for cultivation (2009 new cultivar released in Germany) and it's use as cover oat in Brasil (Marcelo Pachero).
- Also Polish group (Sylwia Okon et al) raported potential sources for resistance of fungal diseases powdery mildew and crown rust in *A. sterilis* genotypes.




Wild Avena relatives have potential

- Hannu Ahokas has reported (2000) introgressive fertile hexaploid oat plant
 - from the Avena abyssinica (AABB) x A. sativa (AACCDD) cross.
 - Stable hexaploid line obtained from colchicine-produced decaploid hybrid after several generations of selection
 - Differencies measured at least in the grain protein fractions and lipids comparing to the either or both parents. Early maturing.

Innovations in plant breeding

Alan Schulman, Luke

Utilization of PGR by assisted pre-breeding

Although genome of hexaploid oat is big (11 300 000 000 bp)

- Improved genomic tools are providing possibilities for
 - mining and identifying valuable alleles and
 - detect them in the crossing/backcrossing progeny individuals
 - by using marker assisted selection of single selected alleles or via genome wide observation.
- With these tools, time-consuming and laborous pre-breeding programmes could be enhanced.
- Moreover: homozygous DH-lines are produced from *A. sterilis* by anther culture
 - o fixes the genotype
 - o simplifies genetic analyses.
 - succesful at least in genotypes CAV 2648, CAV 1191, CAV 2941, CW 533, 16.

Refs: Kiviharju & al. 1998. Agric Food Sci Finld, 7:409-422..

12 Kiviharju et al. 1999, Plant Cell Rep, 18:582:588.© Natural Resources Institute Finland

Cultivar breeders are looking for practical tools

- Breeders are looking for clear practical benefits for cultivar breeding, and that should be the aim for PGR conservation, evaluation and research in the long run as well.
- This is achieved by
 - increasing knowledge and understanding of the genetics and inheritance of the important breeding traits,
 - joint evaluation efforts and
 - continuing development of genomics tools to be more efficient and cheaper to use
 - and development of the breeding methods

Continuous research is essential, to ensure constant improvement in cultivar breeding programmes and to get all available genetic potential in use.

Thank you!

13.7.2016