The express method of oats genotypes evaluating on β-glucans content

- Vadim Polonskiy¹, Igor Loskutov², Alena Sumina³
- ¹Krasnoyarsk State Agrarian University, Krasnoyarsk, Russia,
- ²Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St-Petersburg, Russia,
- ³N.F. Katanov Khakass State University, Abakan, Russia

Background

- Oat (Avena sativa L.) is an excellent source of mixed linkage β-glucans, a dietary fibre with cholesterol lowering properties. These polysaccharides are becoming recognized increasingly for their potential to lower the risk of serious diet-related conditions such as type II diabetes, cardiovascular disease, colorectal cancer, and diverticular disease.
- An increasing of β-glucans content in grain of oat is the most important task of breeding. Known methods of assessing oat grain quality are too time-consuming, complicated, destructive and little avail in breeding process.

- The aim of our work is to develop indirect method for screening β-glucans content in grain of oats which is nondestructive, simple and express.
- The tasks:
- To investigate relationships between grain βglucans content and physical indicators of hulled and dehulled grain;
- 2. To divided oat cultivars into two contrasting groups, which differed significantly from each other in terms of β-glucans content, based on the best physical indicator of grains.

The object and methods

- We studied 16 hulled and 2 naked oat cultivars from VIR collection. We used hulled and dehulled (after removing external flower hulls) grains.
- Grain β-glucans content was measured using standard AACC International Approved Methods of Analysis with Megazyme kit.
- The values of grain β -glucans content of 18 oats cultivars were equal from 3.2 to 6.7%.

Grain β -glucans content of 18 varieties of oats

Methods

- The next physical parameters of grains were measured:
- 1. Weight of 1000 grains (standard method);
- 2. Test weight by measuring the volume of a measured mass of grain in a graduated cylinder (a small scale method by Walker and Panozzo, 2011);
- 3. Mass fraction of grain hulls (standard method);
- 4. Density of hulled and dehulled grain. For calculating grain density the oat grain volume was measured by a sand-displacement method (Doehlert and McMullen, 2008). Fine white silica sand was used for oat grain volume measurements. Sea sand collected from a beach (The South China Sea, Vietnam).

Dehulled grain density of 18 varieties of oat

Results

• The strong positive relation between the density of dehulled grains and β -glucans content was experimentally shown (r = 0.818). It was found the low positive correlation between test weight and β -glucans content; but the middle positive correlation between density of hulled grains and β -glucans content. It was shown low negative correlation between weight of 1000 grains, mass fraction of grain hulls and β -glucans content.

Weight of 1000 grains dependence on the content of β -glucans

Test weight dependence on the content of β -glucans

Mass fraction of grain hulls dependence on the content of β-glucans

Grain density dependence on the content of β -glucans

Dehulled grain density dependence on the content of β -glucans

Coefficients of correlation for physical grain traits

		Hulled grain				Dehulled grain
		Test weight, g/ml	Weight of 1000 grains, g	Density, g/cm3	Mass of grain hulls, %	Density, g/cm3
Hul- led grain	Weight of 1000 grains	0.347				
	Density	0.780*	0.176			
	Mass of grain hulls	-0.477	-0.041	-0.651*		
De- hulled grain	Density	0.101	-0.239	0.278	-0.561*	
	β-glucans content	0.299	-0.096	0.495	-0.458	0.818*

The average value of the dimensionless ratio (the ratio of β-glucans content to dehulled grain density) was equal to 4.16 and varied slightly from cultivars of oat.

The ratio of β -glucans content to the dehulled grain density of 18 varieties of oats

 All samples of oats in terms of β-glucans content were divided into two contrasting groups, which differed significantly from each other not only in terms of β-glucan content, but the density of dehulled grains.

β -glucans content and dehulled grain density of contrasty groups of oats varieties

Group of varieties	Average data			
	Dehulled grain density, g/cm3	Grain β-glucans content, %		
All varieties (18)	1.17±0,04	4.88±0,47		
Three varieties with minimum β -glucans content	1.07±0,02 a	3.57±0,18 a		
Three varieties with maximum β-glucans content	1.28±0,02 b	6.13±0,30 b		

- Indirect method for assessing β-glucans content in oat was developed. It was proposed to use the criterion of the density of dehulled grains to assess technological qualities of oats.
- It is assumed that the use of this approach will ensure a simple, speed, and a quantitative assessment of the quality and the undamaged grain oats in respect of its β-glucans content. Based on the received data the contrasting groups that can be considered as promising forms for oats selection of different directions are singled out.

Conclusion

Acknowledgements

 The work was supported by the Russian Federal Property Fund and the Ministry of Education and Science of the Republic of Khakassia (grant № 6-44-190763).

Thank you for attention!

