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Holland et al. 2010 
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∆𝑮 =
𝑪𝒊𝑽𝑨
𝒚𝝈𝑷

 

Hull ,1945 



Plant Breeding 
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Relies mainly on plant 

or population 

phenotypic evaluations 

and pedigree 

information  

Uses some genotypic 

information to 

improve selection 

Uses a lot of 

genotypic information 

to improve selection 



What is the Phenotype? 
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P = G + E + GE 



GxE Interaction  

Genotype1 Genotype 2 Genotype 1 Genotype 2 

ENV 1 ENV 2 
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Dealing with GxE 
 

1. Ignore 

2. Avoid 

3. Exploit 

 
Bernardo (2010) 



QTLxE 

Genomewide scan with QTLxE 
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Gutierrez et al., 2015 (TAG 128: 506-521) 



QTLxE in a RIL population for saline 

stress in Lotus 

Quero et al., 2014 (Crop Pasture Sci. 65(2): 139-149) 

qS3 qS5 
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Handling GxE for QTL Mapping 



Gutierrez et al., 2015 (TAG 128: 506-521) 

QTLxE on a GWAS population for 

disease resistance traits in Barley 

Leaf Rust 
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Global QTL as well as Mega-

environment specific QTL were 

detected. Different strategies 

should be used for each type. 

ME1 

ME2 

Handling GxE for QTL Mapping 



QTL for Marker Assisted Selection 

Gutierrez et al., 2013 (Adv. Barley Sci.: 209-216) 

Leaf Rust Spot Blotch 
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Winterhardiness 

Zitzewitz et al., 2011  

(The Plant Genome 4(1): 76-91)  

BARLEY 

Gutierrez et al., 2011  

(The Plant Genome 4:256 – 272) 

Malting Quality 



Some Limitations of MAS 

LIMITATIONS OF MAS (BEAVIS EFFECT) 
 

1. Underestimation of the number of QTL 

2. Over-estimation of effects 
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Bernardo 2010 



Molecular Breeding 

SELECTION RESPONSE VS. UNDERLING CAUSES 
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Building blocks 

Black box 



Genomic Selection 

STEPS IN GENOMIC PREDICTION 

1. Create/choose a Training Population: this is a group of individuals 
that will be used to train the model (i.e. obtain marker predictors). 
Things to take into account: 
a) Population size 

b) Trait: h2, number of QTL, and trait per se 

c) Population structure 

d) Relationship to Testing Population 

e) Markers: Number and platform 

f) Genotype by Environment Interaction 

2. Genotype and Phenotype individuals in the Training Population. 

3. Train the model: use one of the methods described previously to 
obtain marker predictors. 

4. Create/choose a Testing Population: this is a set of individuals 
whose merit we wish to determine. 

5. Genotype individuals in the Testing Population. 

6. Predict Breeding Values for the Testing Population: use the model 
created with the training population and the genotypic information of 
the testing population to determine their merit (i.e. to get the GEBV). 
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Handling GxE in GS 

Genomic Selection with GxE 
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GBLUP(M): 

 y(Nx1): vector of mean performance 

 g ~ N(0, A(NxN)σ
2

g) 

 N: number of genotypes 

 

 

 

GBLUP(gxe): 

 y(nx1): vector of mean performance 

 g ~ N(0, A(NxN)⨂𝝆(kxk) σ’
2

g) 

 n: number of genotypes (N) by number of environments (k) 

 
Lado et al., 2015 (Crop Sci.) 



Handling GxE for GS 

Lado et al., 2015 (Crop Sci.) 
15 
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Lado et al., 2015 (Crop Sci.) 

Handling GxE for GS 
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Gonzalez-Barrios et al.,  (in prep) 

Handling GxE for GS 

USING ENVIRONMENTAL COVARIATES 



Crosses Crosses 

Crosses 

Oat Breeding at UW-Madison 
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Right off  

my plane 

Crosses 

The Crew 

Increases Increases 

Planting Planting 

Quite a  

sight! 2-leave 

Advanced Elite Uniform 



Oat Breeding at UW-Madison 
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The Crew 

Madison 

Marshfield Sturgeon Bay 

Spooner 

Arlington 

Marshfield 



Oat ideas 
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Use the Information provided on T3: 

• CORE 

• POGI 

• BREEDING PROGRAMS 

 

GBS Data (Nick Tinker) 

Historical Phenotypic data (highly unbalanced) 

Good GS predictions (Jean-Luc Jannink) 

 

GxE characterization 

Strategic Phenotyping 

Strategic Phenotyping 

 

Devise a training GLOBAL Oats data-set 

Use GxE to enhance prediction ability  
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Genomic Selection 

A) POPULATION SIZE AND B) TRAIT h2: 

Larger population sizes and higher heritabilities increase genomic 
selection accuracy 
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Hayes et al., 2009; Lorenzana and Bernardo, 2009; Lorenz et al., 2011; Asoro et al., 2011 



Genomic Selection 

B) TRAIT: per se 
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The trait is relevant not 

only for its heritability,  

but for the trait per se. 

Combs and Bernardo, 2013 

150 DH from Steptoe x Morex with 233 Markers 

(Hayes et al., 1993) 



Genomic Selection 

C) POPULATION STRUCTURE 

AND D) RELATIONSHIP TO INDIVIDUALS 

24 Crossa et al., 2013 

5 wheat populations with N= 92, 176, 148, 90, 176 

for stem rust with DArTs 



Genomic Selection 

C) POPULATION STRUCTURE 

AND D) RELATIONSHIP TO INDIVIDUALS 

25 Asoro et al., 2011 
421-446 Oat lines, 1005 DArT markers 

Older training 

populations have smaller 

or no prediction accuracy 

difference. 

 

Related training and 

testing populations have 

larger prediction 

accuracy. 

 

Mixed training 

populations have lower 

accuracy unless mixed 

populations are larger. 



Genomic Selection 

E) NUMBER OF MARKERS 

26 Lorenzana and Bernardo, 2009; Heffner et al., 2011; Asoro et al., 2011 

374 winter wheat F5 lines with 

5000 DArTs 

421-446 Oat lines, 1005 

DArT markers 

223 RIL maize BM-TC1 test-

crossed 1339 SSR or RFLP 



Genomic Selection 

PREDICTION METHOD 

27 Asoro et al., 2011 

Prediction method (BayesC, RR-BLUP) did not affect accuracy as much as 

trait, marker density, and training population size, depth (increasing 

population size by including older lines increased selection accuracy) and 

age (older populations have lower accuracy for some traits). 

 

421-446 Oat lines, 1005 DArT markers 


