Incorporating genotype-by-environment and genomic selection information into oat breeding programs

Lucía Gutiérrez

Quantitative Genetics and Cereals Breeding

Agronomy Department

University of Wisconsin - Madison

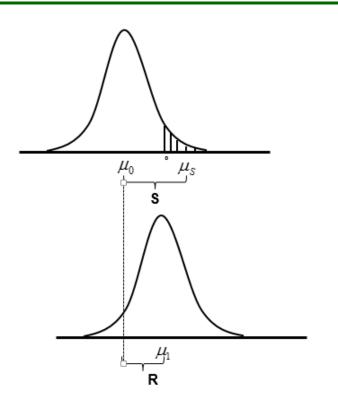
gutierrezcha@wisc.edu

July 2016

International Oats Conference, St. Petersburg, Russia

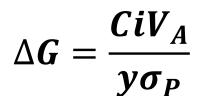


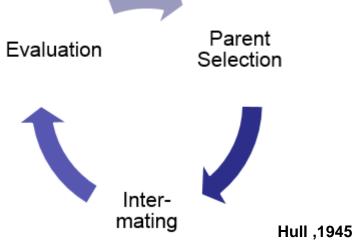
Selection Response



μ₀ = mean of the initial Random Mating population
μ_s = mean of a selected individual s from R.M. population
μ₁ = mean of a progeny of selected individual s
c = truncatio n point
S = selection differentia 1 (ΔX)
R = response to selection (ΔY)

 $\Delta Y = b(\Delta X)$





Holland et al. 2010

Plant Breeding

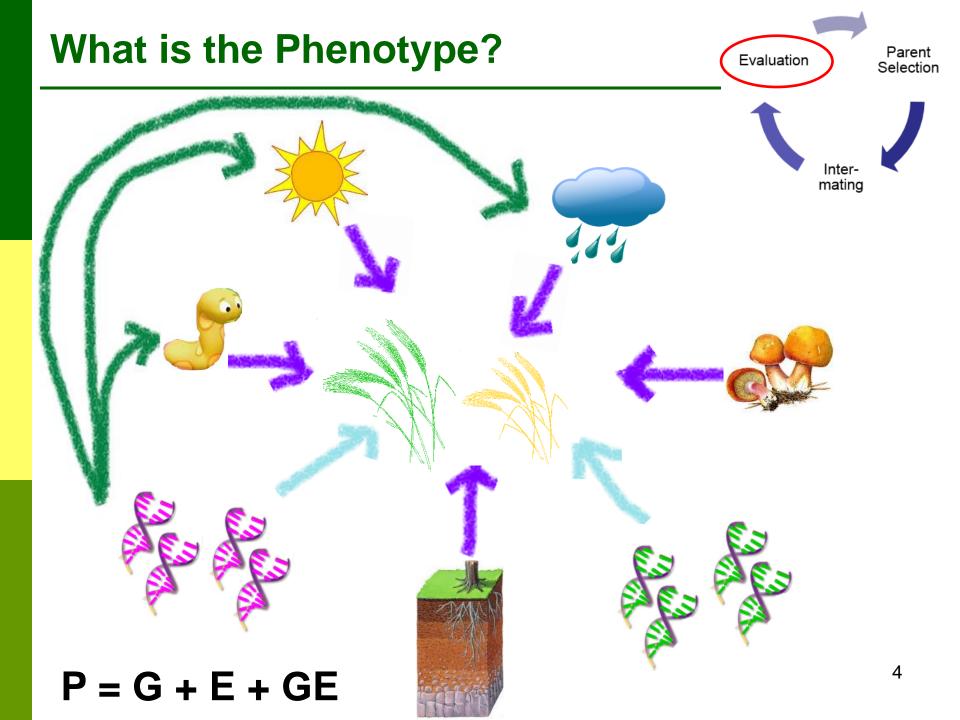
TRADITIONAL PLANT BREEDING

Relies hainly on plant or conulation herotypic evaluations and pedigree mformation

Uses some genotypic information to improve selection

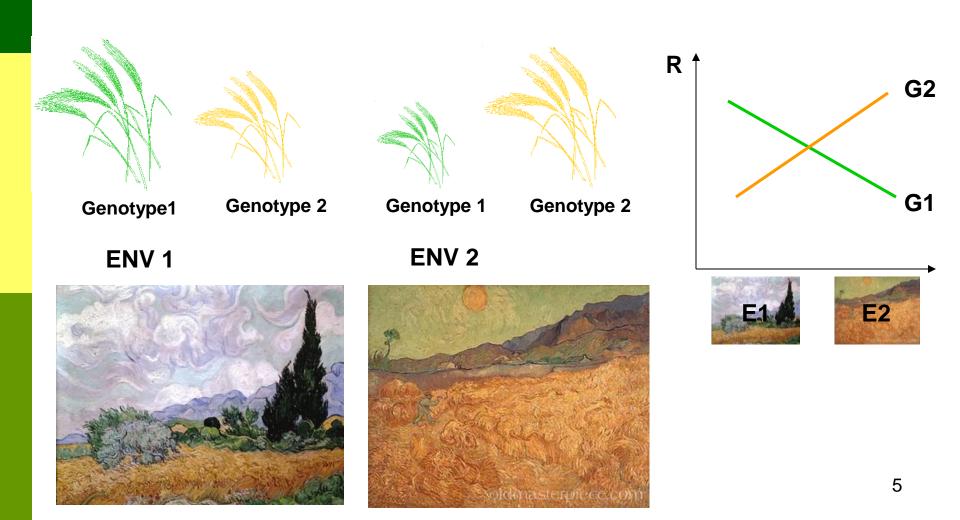
GENOMIC SELECTION

Uses a lot of genotypic information to improve selection



GxE Interaction

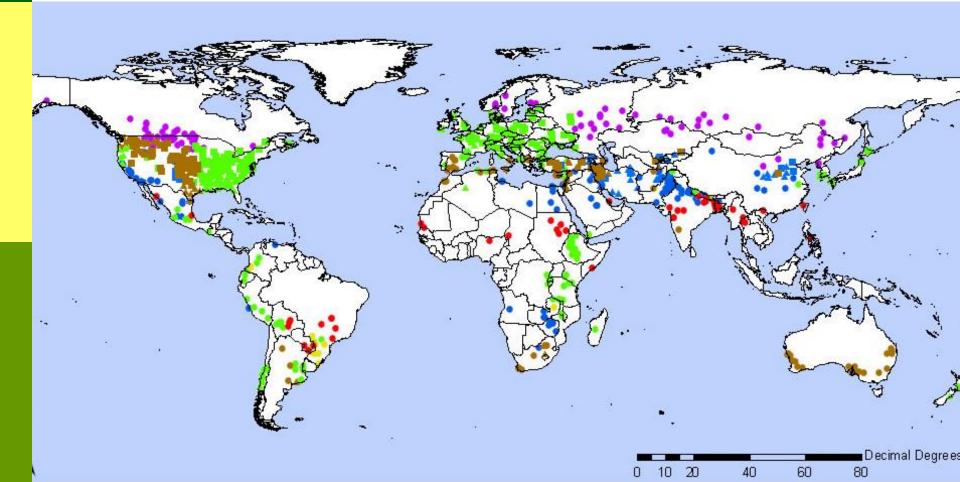
 $P_{ijk} = \mu + G_i + E_j + \mathbf{GE}_{ij} + \varepsilon_{ijk}$



Dealing with GxE

- Ignore
 Avoid
 Evolution
- 3. Exploit

Bernardo (2010)



QTLxE

Genomewide scan with QTLxE

$$\underline{\underline{P}}_{ij} = \mu + \underline{E}_{j} + \underline{\underline{G}}_{i} + \underline{\underline{GE}}_{ij}$$

$$\underline{\underline{P}}_{ij} = \mu + \underline{E}_{j} + x_{i}\alpha + \underline{\underline{G}}_{i}^{*} + x_{i}\alpha_{j}^{*} + \underline{\underline{GE}}_{ij}^{*}$$

$$\underline{\underline{P}}_{ij} = \mu + x_{i}\alpha_{j} + \underline{\underline{\varepsilon}}_{ij}$$

 α = QTL main effect

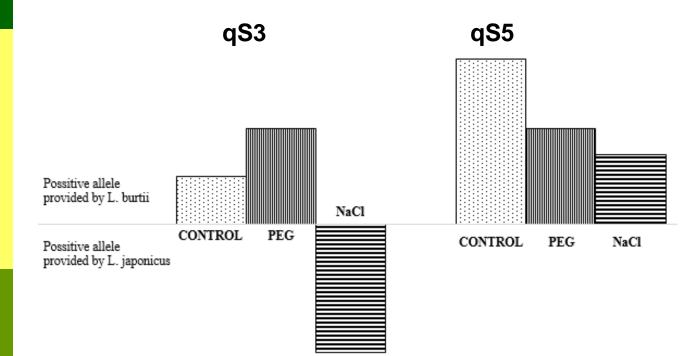
- $\alpha_i^* = QTLxE = deviation of QTL main effect$
- α_i = Environment specific QTL effect

Gutierrez et al., 2015 (TAG 128: 506-521)

7

Handling GxE for QTL Mapping

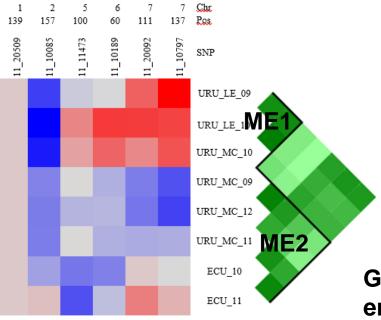
QTLxE in a RIL population for saline stress in *Lotus*



Handling GxE for QTL Mapping

QTLxE on a GWAS population for disease resistance traits in <u>Barley</u>

Leaf Rust



Global QTL as well as Megaenvironment specific QTL were detected. Different strategies should be used for each type.

QTL for Marker Assisted Selection

Instituto Nacional de Investigación Agropecuaria U R U G U A Y

Gutierrez et al., 2013 (Adv. Barley Sci.: 209-216)

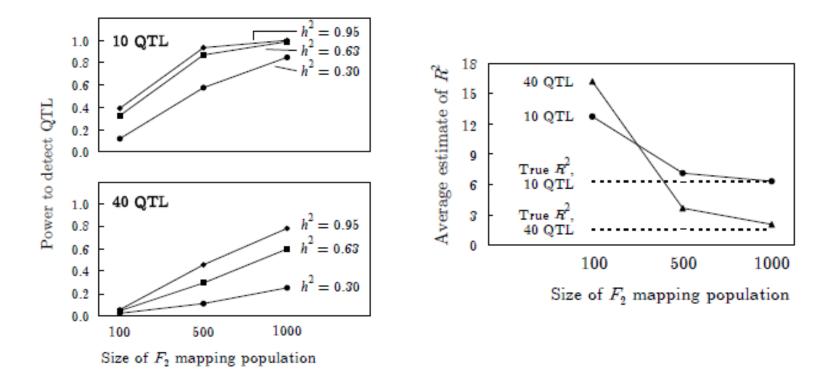
Zitzewitz et al., 2011 (The Plant Genome 4(1): 76-91)

<u>Gutierrez et al., 2011</u> (The Plant Genome 4:256 – 272)

Some Limitations of MAS

LIMITATIONS OF MAS (BEAVIS EFFECT)

- 1. Underestimation of the number of QTL
- 2. Over-estimation of effects



Bernardo 2010

SELECTION RESPONSE VS. UNDERLING CAUSES

Trait	Genetic control	Population used for selection	Accuracy of gene/QTL position	Molecular Breeding (MB)method			
Qualitative	Few major genes	Elite X Elite	High accuracy - Ideally marker = gene	MAS			
		Elite x Non-elite	- Often, marker close to gene (stable association)				
Quantitative	Few QTL of large effects	Elite x Non-elite	Medium to low accuracy (CI >10cM) - Markers linked to QTL - Associations marker- QTL depend on the genetic background	MABC	Equinor Granhies.no?		
		Elite x Elite		C MARS			
	Numerous QTL of small effects	Elite x Elite		(or GWS)	Black box		
	1			1			

Building blocks

Genomic Selection

STEPS IN GENOMIC PREDICTION

- Create/choose a Training Population: this is a group of individuals that will be used to train the model (i.e. obtain marker predictors). Things to take into account:
 - a) Population size
 - b) Trait: h², number of QTL, and trait *per se*
 - c) Population structure
 - d) Relationship to Testing Population
 - e) Markers: Number and platform
 - f) Genotype by Environment Interaction
- 2. Genotype and Phenotype individuals in the Training Population.
- 3. Train the model: use one of the methods described previously to obtain marker predictors.
- 4. Create/choose a Testing Population: this is a set of individuals whose merit we wish to determine.
- 5. Genotype individuals in the Testing Population.
- 6. Predict Breeding Values for the Testing Population: use the model created with the training population and the genotypic information of the testing population to determine their merit (i.e. to get the GEBV).¹³

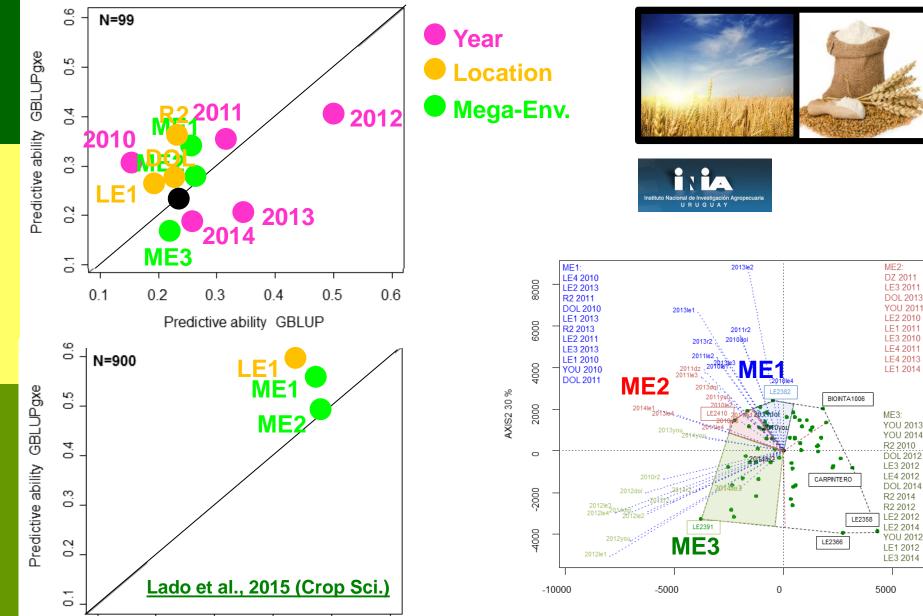
Genomic Selection with GxE

 $y = 1\mu + Zg + \varepsilon$

```
\begin{array}{l} \text{GBLUP}_{(\text{M})}:\\ y_{(\text{Nx1})}: \text{ vector of mean performance}\\ g \sim N(0, A_{(\text{NxN})}\sigma_g^2)\\ \text{N: number of genotypes} \end{array}
```

```
\begin{array}{l} \mathsf{GBLUP}_{(\mathrm{gxe})}:\\ \mathbf{y}_{(\mathrm{nx1})}: \ \text{vector of mean performance}\\ \mathbf{g} \sim \mathbf{N}(\mathbf{0}, \, \mathbf{A}_{(\mathrm{NxN})} \otimes \rho_{(\mathrm{kxk})} \, \sigma^{\prime 2}{}_{\mathrm{g}})\\ \mathrm{n: \ number \ of \ genotypes} \ (\mathbf{N}) \ \mathrm{by \ number \ of \ environments} \ (\mathbf{k}) \end{array}
```

Handling GxE for GS



AXIS1 44 %

Handling GxE for GS

-

_

- -

-				-						
	Training set		Testing location							
Set		Testing Year	LE		YOU		DOL		R2	
			1	2	1	2	1	2	1	2
By year [†]	All locations in testing year but one	2010	0.31	0.31	0.12	0.17	0.71	0.71	0.57	0.44
		2011	0.42	0.39	0.39	0.31	0.52	0.37	0.44	0.57
		2012	0.74	0.79	0.44	0.54	0.78	0.81	0.57	0.65
		2013	0.03	0.05	0.40	0.74	0.36	0.59	0.28	0.36
		2014	0.23	-0.14	0.30	0.19	0.58	0.71	0.30	0.19
By location [‡]	All years for a location but one	2010	0.16	0.17	0.01	-0.02	-0.06	0.04	0.01	0.11
		2011	0.23	0.18	0.27	0.34	0.08	0.14	0.19	0.29
		2012	0.50	0.31	0.10	0.04	0.33	0.29	0.05	0.15
		2013	0.23	0.10	-0.05	0.08	0.31	0.56	0	0.19
		2014	0.21	0.20	0.06	-0.05	0.08	0.36	-0.05	0.33
By mega-	All environments for a specific mega-environment but one	2010	0.10 (1) [¶]	0.20 (1)	0.11 (1)	0.18 (1)	0.72 (1)	0.72 (1)	0.32 (3)	0.35 (3
environment§		2011	0.36 (2)	0.35 (2)	0.36 (2)	0.44 (2)	0.39 (1)	0.28 (1)	0.38 (1)	0.39 (1
		2012	0.63 (3)	0.45 (3)	0.46 (2)	0.54 (2)	0.75 (3)	0.80 (3)	0.63 (3)	0.30 (3
		2013	0.28 (1)	0.18 (1)	0.46 (3)	0.43 (3)	0.43 (2)	0.50 (2)	0.44 (1)	0.32 (1
		2014	0.24 (2)	0.25 (2)	-0.01 (2)	0.11 (2)	0.63 (3)	0.78 (3)	-0.03 (3)	0.20 (3

USING ENVIRONMENTAL COVARIATES

Year	GBLUP(M)	GBLUP(gxe)	GBLUP(gxe) + Cov	GBLUP(cov)	GBLUP(M) + Cov
2010	0.204	0.669	0.742	0.243	0.324
2011	0.469	0.652	0.688	0.236	0.237
2012	0.475	0.372	0.484	0.176	0.185
2013	0.551	0.622	0.496	0.292	0.286
2014	0.234	0.646	0.679	0.243	0.269

Oat Breeding at UW-Madison

Advanced

Right off

Planting

Elite

Uniform

UW - MADISO

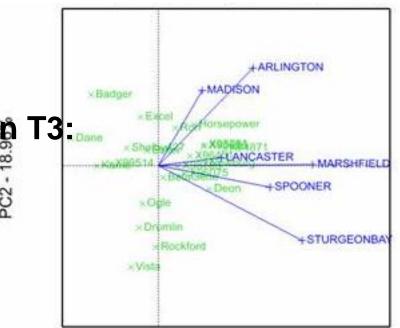
Oat Breeding at UW-Madison

Oat ideas

Use the Information provided on T3:

- CORE
- POGI
- BREEDING PROGRAMS

GBS Data (Nick Tinker)



Historical Phenotypic data (highly unbalanced) 29% Good GS predictions (Jean-Luc Jannink)

GxE characterization Strategic Phenotyping Strategic Phenotyping

Devise a training GLOBAL Oats data-set Use GxE to enhance prediction ability

Funding and Acknowledgement

Statistical Genetics: Gaston Quero Sofia Brandariz Bettina Lado Ines Berro Pablo Gonzalez Agustin Gonzalez Alejandra Borges Pablo Sandro Natalia Berberian Juan Rosas

Barley Breeding: Ariel Castro Silvia German

Instituto Nacional de Investigación Agropecuaria URUGUAY

Rice Breeding: Alvaro Roel Gonzalo Zorrilla Marco Dalla Rizza Victoria Bonnecarrere Pedro Blanco Fernando Pérez de Vida Schubert Fernández Silvia Garaycochea

Wheat Breeding: Martin Quincke Paula Silva Silvia German

Animal Breeding: Ignacio Aguiar

Breedina

WAGENINGEN UR For quality of life

Fred van Eeuwijk

Marcos Malosetti

Pat Hayes Alfonso Cuesta-Marco

Cornell University

Jean-Luc Jannink Susan McCouch Eliana Monteverde

Funding:

Monica Balzarini Cecilia Bruno Andrea Pena

THE UNIVERSITY OF ALABAMA

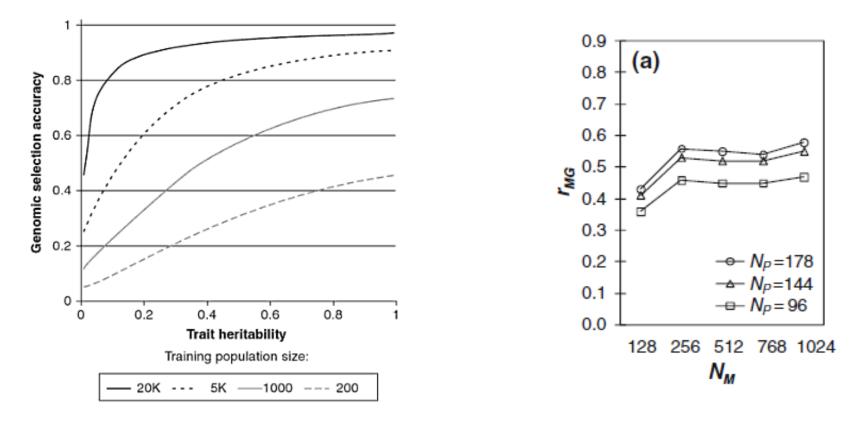
Gustavo de los Campos Ana Ines Vazquez

UNIVERSITY OF WISCONSIN–MADISON

Genomic Selection

A) POPULATION SIZE AND B) TRAIT h²:

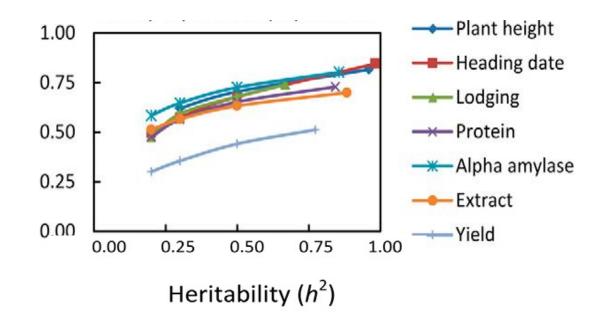
Larger population sizes and higher heritabilities increase genomic selection accuracy



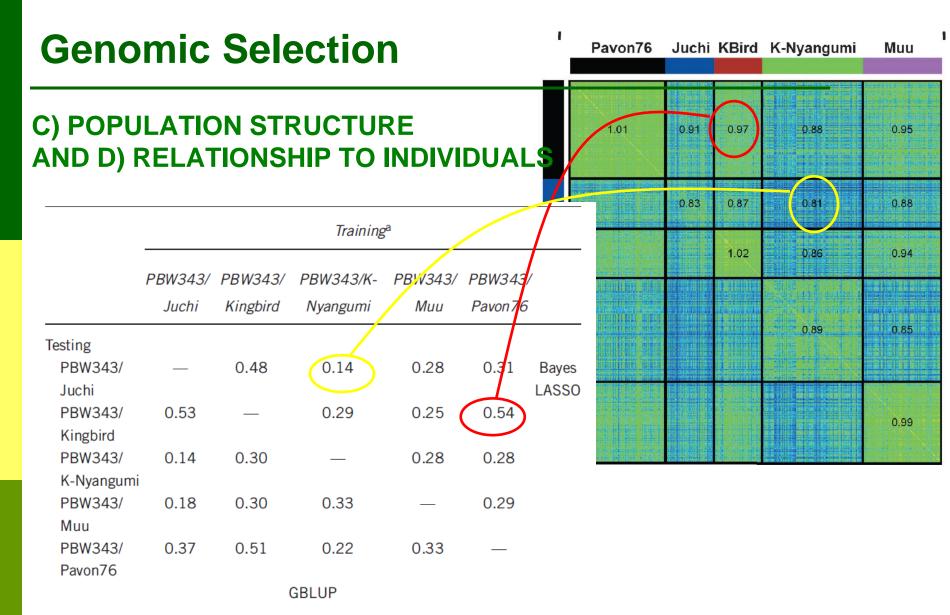
Genomic Selection

B) TRAIT: per se

The trait is relevant not only for its heritability, but for the trait *per se*.



150 DH from Steptoe x Morex with 233 Markers (Hayes et al., 1993)



5 wheat populations with N= 92, 176, 148, 90, 176 for stem rust with DArTs

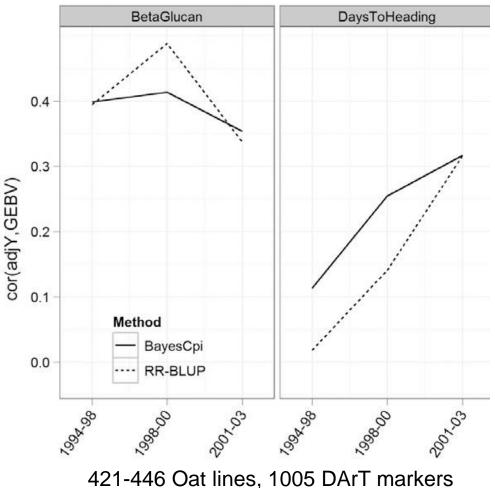
Crossa et al., 2013

C) POPULATION STRUCTURE AND D) RELATIONSHIP TO INDIVIDUALS

Older training populations have smaller or no prediction accuracy difference.

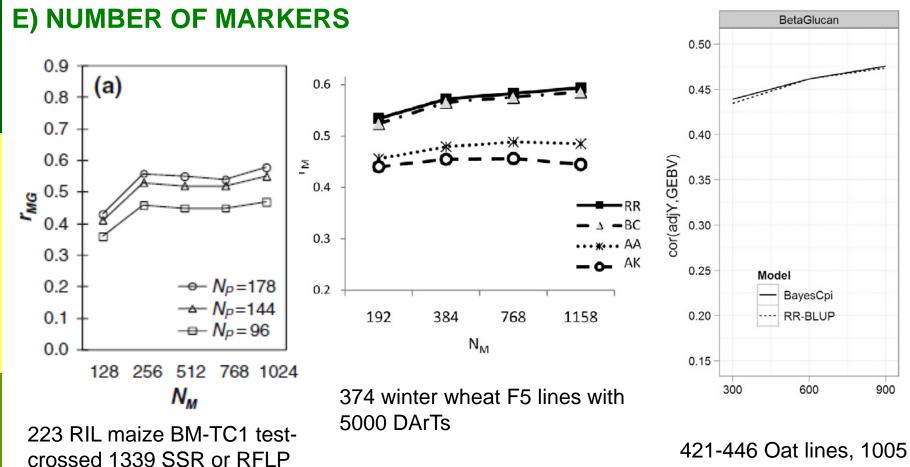
Related training and testing populations have larger prediction accuracy.

Mixed training populations have lower accuracy unless mixed populations are larger.



Asoro et al., 2011

Genomic Selection



DArT markers

Lorenzana and Bernardo, 2009; Heffner et al., 2011; Asoro et al., 2011

PREDICTION METHOD

Prediction method (BayesC, RR-BLUP) did not affect accuracy as much as trait, marker density, and training population size, depth (increasing population size by including older lines increased selection accuracy) and age (older populations have lower accuracy for some traits).

					-
Source of variation	df	Marker density	Training population size	Training population depth	Training population age
Trait [†]	4	<0.0001	< 0.0001	<0.0001	<0.0001
Method [‡]	1	0.22	0.02	0.21	0.06
Design§	2	< 0.0001	< 0.0001	<0.0001	<0.01
Trait × method	4	0.03	0.14	0.56	0.31
Trait × design	8	<0.01	<0.01	<0.0001	<0.01
Method × design	2	0.26	0.11	0.64	0.52
Error	8				
Total	29				

421-446 Oat lines, 1005 DArT markers